Ground motion prediction equations as a proxy for medium properties variation due to geothermal resources exploitation

  • Gritto, R. & Jarpe, SP Temporal variations of Vp/Vs-ratio at The Geysers geothermal field, USA. Geothermals 52, 112–119. https://doi.org/10.1016/j.geothermics.2014.01.012 (2014).

    Article Google Scholar

  • Convertito, V., De Matteis, R., Esposito, R. & Capuano, P. Using ground motion prediction equations to monitor variations in quality factor due to induced seismicity: A feasibility study. Acta Geophys. 68, 723–735. https://doi.org/10.1007/s11600-020-00441-0 (2020).

    ADS Article Google Scholar

  • De Landro, G., Amoroso, O., Russo, G. & Zollo, A. 4D travel-time tomography as a tool for tracking fluid-driven medium changes in offshore oil-gas exploitation areas. Energy 13(22), 5878. https://doi.org/10.3390/en13225878 (2020).

    CAS Article Google Scholar

  • De Landro, G. et al. Decade-long monitoring of seismic velocity changes at the Irpinia fault system (southern Italy) reveals pore pressure pulsations. Sci. Rep. 121247. https://doi.org/10.1038/s41598-022-05365-x (2022).

    ADS CAS Article PubMed PubMed Central Google Scholar

  • Tsuji, T. et al. Continuous monitoring system for safe management of CO2 storage and geothermal reservoirs. Sci. Rep. 1119120. https://doi.org/10.1038/s41598-021-97881-5 (2021).

    ADS CAS Article PubMed PubMed Central Google Scholar

  • Hutchings, L., Bonner, B., Saltiel, S., Jarpe, S. & Nelson, M. Rock physics interpretation of tomographic solutions for geothermal reservoir properties. Appl. Geophys. House Stud. Environment. Explore. Eng. Geophys. https://doi.org/10.5772/intechopen.81226 (2019).

    Article Google Scholar

  • Guo, H. & Thurber, C. Double-difference seismic attenuation tomography method and its application to The Geysers geothermal field, California. Geophys. J. Int. 225(2), 926–949. https://doi.org/10.1093/gji/ggab017 (2021).

    ADS Article Google Scholar

  • Douglas, J. Earthquake ground motion estimation using strong-motion records: A review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth-Ski. rev. 61, 43–104. https://doi.org/10.1016/S0012-8252(02)00112-5 (2003).

    ADS Article Google Scholar

  • Eberhart-Phillips, D. & Oppenheimer, DH Induced seismicity in The Geysers Geothermal Area, California. J. Geophys. Res. 89(B2), 1191–1207. https://doi.org/10.1029/JB089iB02p01191 (1984).

    ADS Article Google Scholar

  • Majer, EL et al. Induced seismicity associated with Enhanced Geothermal Systems. Geothermals 363. https://doi.org/10.1016/j.geothermics.2007.03.003 (2007).

    Article Google Scholar

  • Martínez-Garzón, P. et al. Spatiotemporal changes, faulting regimes, and source parameters of induced seismicity: A case study from The Geysers geothermal field. J. Geophys. Res. Solid Earth 119, 8378–8396. https://doi.org/10.1002/2014JB011385 (2014).

    ADS Article Google Scholar

  • Kwiatek, G. et al. Effects of long-term fluid injection on induced seismicity parameters and maximum magnitude in the northwestern part of The Geysers geothermal field. J. Geophys. Res. Solid Earth 120, 7085–7101. https://doi.org/10.1002/2015JB012362 (2015).

    ADS Article Google Scholar

  • Swiss Seismological Service (SED) at ETH Zurich. National Seismic Networks of Switzerland. (ETH Zürich. Other/Seismic Network, 1983). https://doi.org/10.12686/sed/networks/ch (accessed on 2 February 2022).

  • Swiss Seismological Service (SED) at ETH Zurich. Temporary Deployments in Switzerland Associated with Aftershocks and Other Seismic Sequencess ETH Zurich Other/Seismic Network, 2005). https://doi.org/10.12686/sed/networks/8d (accessed on 2 February 2022).

  • Diehl, T., Kraft, T., Kissling, E. & Wiemer, S. The induced earthquake sequence related to the St. gallen deep geothermal project (Switzerland): Fault reactivation and fluid interactions imaged by microseismicity. J. Geoph. Res. Solid Earth 1227272–7290 (2017).

    ADS Article Google Scholar

  • Moeck, I. et al. The St. Gallen project: Development of fault controlled geothermal systems in urban areas. In Proceedings of the World Geothermal Congress (2015).

  • Zbinden, D., Rinaldi, AP, Diehl, T. & Wiemer, S. Hydromechanical modeling of fault reactivation in the St. Gallen deep geothermal project (Switzerland): Poroelasticity or hydraulic connection?. Geophys. Res. Lett. 47e2019085201 (2020).

    ADS Article Google Scholar

  • Zbinden, D., Rinaldi, AP, Diehl, T. & Wiemer, S. Potential influence of overpressurized gas on the induced seismicity in the St. Gallen deep geothermal project (Switzerland). Solid Earth 11, 909–933. https://doi.org/10.5194/se-11-909-2020 (2020).

    ADS Article Google Scholar

  • Gueguen, Y. & Palciauskas, V. Introduction to the Physics of Rocks (Princeton University Press, 1994). https://doi.org/10.1017/S0016756800008761.

    Book Google Scholar

  • Toksöz, MN, Johnston, DH & Timur, A. Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics 44(4), 681–690 (1979).

    ADS Article Google Scholar

  • Johnston, DH, Toksöz, MN & Timur, A. Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms. Geophysics 44(4), 691–711 (1979).

    ADS Article Google Scholar

  • Wandycz, P. et al. Estimation of the quality factor based on the microseismicity recordings from Northern Poland. Acta Geophys. 67, 2005–2014. https://doi.org/10.1007/s11600-019-00362-7 (2019).

    ADS Article Google Scholar

  • Zollo, A. & de Lorenzo, S. Source parameters and three-dimensional attenuation structure from the inversion of microearthquake pulse width data: Method and synthetic tests. J. Geophys. Res. 106(B8), 16287–16306. https://doi.org/10.1029/2000JB900463 (2001).

    ADS Article Google Scholar

  • Bianco, F., Del Pezzo, E., Castellano, M., Ibanez, J. & di Luccio, F. Separation of intrinsic and scattering seismic attenuation in the Southern Apennine zone, Italy. Geophys. J. Int. 150(1), 10–22. https://doi.org/10.1046/j.1365-246X.2002.01696.x (2002).

    ADS Article Google Scholar

  • Eberhart-Phillips, D. & Chadwick, M. Three-dimensional attenuation model of the shallow Hikurangi subduction zone in the Raukumara Peninsula, New Zealand. J. Geophys. Res. https://doi.org/10.1029/2000JB000046 (2002).

    Article Google Scholar

  • Bisrat, ST, DeShon, HR, Pesicek, J. & Thurber, C. High-resolution 3-DP wave attenuation structure of the New Madrid Seismic Zone using local earthquake tomography. J. Geophys. Res. Solid Earth 119, 409–424. https://doi.org/10.1002/2013JB010555 (2014).

    ADS Article Google Scholar

  • Zollo, A., Orefice, A. & Convertito, V. Source parameter scaling and radiation efficiency of microearthquakes along the Irpinia fault zone in southern Apennines, Italy. J. Geophys. Res. Solid Earth 119, 3256–3275. https://doi.org/10.1002/2013jb010116 (2014).

    ADS Article Google Scholar

  • Picozzi, M. et al. Accurate estimation of seismic source parameters of induced seismicity by a combined approach of generalized inversion and genetic algorithm: Application to The Geysers geothermal area, California. J. Geophys. Res. Solid Earth 122, 3916–3933. https://doi.org/10.1002/2016JB013690 (2017).

    ADS Article Google Scholar

  • Douglas, J. Earthquake ground motion estimation using strong-motion records: A review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth Sci. rev. 61, 43–104. https://doi.org/10.1016/S0012-8252(02)00112-5 (2003).

    ADS Article Google Scholar

  • Akaike, H. A new look at the statistical model identification. IEEE Trans. Automatic Control 19, 716–723. https://doi.org/10.1109/TAC.1974.1100705 (1974).

    ADS MathSciNet Article MATH Google Scholar

  • Belsley, DA, Kuh, E. & Welsch, RE Regression Diagnostics: Identifying Influential Data and Sources of Collinearity (Wiley, 1979).

    MATH Google Scholar

  • Emolo, A., Convertito, V. & Cantore, L. Ground-motion predictive equations for low-magnitude earthquakes in the Campania-Lucania Area, Southern Italy. J. Geophys. Eng. 8, 46–60. https://doi.org/10.1088/1742-2132/8/1/007 (2011).

    Article Google Scholar

  • Sharma, N., Convertito, V., Maercklin, N. & Zollo, A. Ground motion prediction equations for “the geysers” geothermal area based on induced seismicity records, 103, 1117–130. Bull. Seismic. Shock. I have. https://doi.org/10.1785/0120120138 (2013).

    Article Google Scholar

  • Marquardt, DW An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963).

    MathSciNet Article Google Scholar

  • Chatelain JL Fine study of seismicity in continental collision zones using a network of portable stations: In the Hindu-Kush-Pamir regionThèse de 3 éme cycle, 1978 Toulouse Université Paul Sabatie (1978).

  • Leave a Comment